A smart LNG Offloading to Conventional LNG Carriers in Severe Open Sea Environments

FLNG offloading state of the art

Expected design features

- LNG loading of conventional/unmodified LNG carriers.
- High operability (up to at least Hs = 4 m).
- Large separation between units providing protection against risk of collision & process upsets.
- Minimize LNG transfer lines length (→ minimize pressure drop/BoG).
- Use of proven or qualified technologies.

Current side-by-side and tandem offloading systems do not satisfy all wishes...

FLNG offloading state of the art

Can we Take LNG Offloading Further?

HiLoad LNG Parallel Loading System

A smart solution meetings all expectations

LNGC Fleet

Waves/ Operability

Separation distance (Collision & Process upset)

LNG Transfer Length/Efficiency

LNG Transfer Technology

HiLoad LNG PLS Midship loading

Conventional (w/o DP, midship manifold)

At least Hs 4 m

Large distance

≈ 100 m

Aerial flexible pipe & MLA Qualified

HiLoad LNG Parallel Loading System

Operational Envelope – LNGC Position Keeping

Operational Envelope – LNGC Heading Control

Change of FLNG Heading

LNG Fluid Transfer with Aerial Flexibles

Proven or qualified technologies

LNG transfer – Amplitude-LNG Loading System (ALLS)

_		
	7	External sheath
	6	Insulation layer
	5	Intermediate sheath
ſ	4	Insulation layer
	3	Synthetical fibers spiral
	2	Synthetical fibers armour
	1	Corrugated tube

MCE Deepwater Development 2016

Proven or qualified technologies

DP station keeping by HiLoad DP

 4 x 2800 kW diesel engines (CAT C175/60, MTU 20V4000P83, or similar).

4 x 2300 kW azimuth thrusters (4 x 50%)
Compact Azipod or mechanical thruster.

Standard LNG Loading Arms connected to LNGC Manifold. No relative motion.

3 x 16" Quick Connect/Disconnect Coupler for LNG/Vapour Flexibles. **Note:** Location not updated

Roll Damping by HiLoad keel = Reduced Sloshing

—— Case 2 = LNGC with HiLoad (passive)

— Case 3 = LNGC with HiLoad (constant thrust)

--- Case 4 = LNGC with HiLoad (thrusters - active)

Case 5 = LNGC with HiLoad (thrusters - active - higher power)

Main roll damping effect for waves with periods in [8s; 15s]

UP to 50% ROLL REDUCTION

(by passive damping from HiLoad only)

UP to 80% ROLL REDUCTION

(by active damping from HiLoad thrusters)

DEMO at MARIN Simulator – Sept 2015

DEMO at MARIN Simulator – Sept 2015

LNGC Heading Control by Rudder

Active & Passive Safety Barriers

HiLoad LNG PLS is a Fail Safe solution

Conclusion

HiLoad LNG PLS Combines the advantages of Side by Side and Tandem

SAFETY

Large separation distance: 100 m

No personnel transfer via crew boat all travels safely to LNGC with HiLoad

100 m

DP2

EFFICIENCY

Operation in up to Hs 4.0 m

Increased offloading operability

Roll Reduction of LNGC

DP2 Station Keeping of LNGC by HiLoad

FLEXIBILITY

Enables use of any conventional **LNGC**

Even non-DP LNGC

Any Conventional LNG Carrier

Tug is not strictly required (efficient heading control with rudder)

Thank you

