Safe Hydrate Plug Management From Prevention to Remediation

Christina Tzotzi & Antoine Marret FORSYS Subsea, Paris

PAU, FRANCE • 5-7 APRIL 2016

Benefits in Simplified Architectures based on Continuous or Occasional Heating

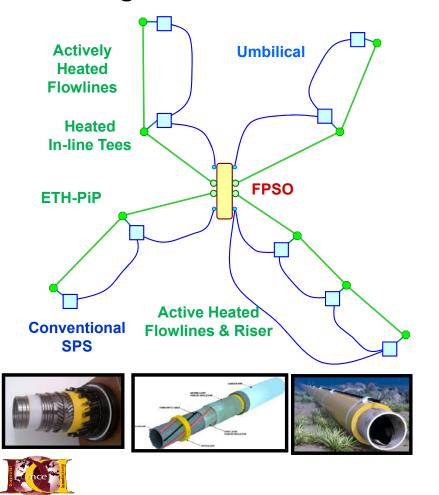
Single Line Benefits:

- 50% less flowlines length
 - Less Procurement & Installation Costs

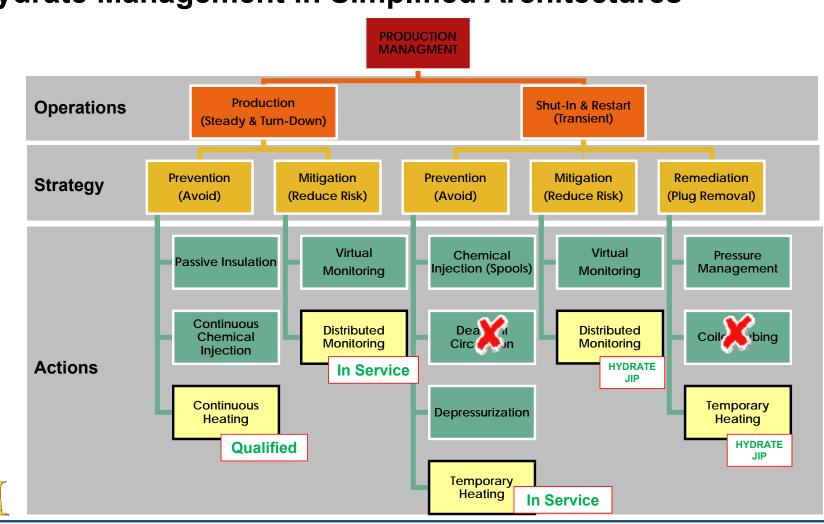
- 50% less risers
- Reduced size of chemical umbilical's & maniforlds
- Minimize number of spools & PLETs

CAPEX/ OPEX trade off:

Lower insulation level by continuous heating
On most projects, only short periods of production necessitate high passive insulation

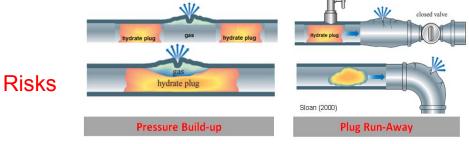


CAPEX


Benefits in Simplified Architectures based on Continuous or Occasional Heating

Active Heating Benefits in Operations

- Shorter shutdown duration (no touch time): Faster & Easier shut-down and restart
- Wax Management: No need for frequent pigging
- Reduced amount of injected chemicals
- Addresses most of flow assurance issues during life of field
- Potential IOR benefits (lower dP at the end of fieldlife enabled by continuous heating


Hydrate Management in Simplified Architectures

JIP : Safe Hydrate Plug Management in Active Heating Flowlines

JIP Objectives

- Plug Quality: Produce low-permeability and low-porosity hydrate plug.
- Full Scale Experiments: Experiment ETH technologies for safe dissociation of hydrate plug and eliminate the risks for local pressure build-up and hydrate plug run-away by careful control of heating input.

- Modeling: Validate simulation tools based on CFD for subsea structures and develop an 'in-house' 2D for hydrate remediation subsea field applications.
- Monitoring: Qualify a monitoring system based on DTS for Hydrate Plug Condition Monitoring : Formation, Dissociation by Depressurization &/or Active Heating.

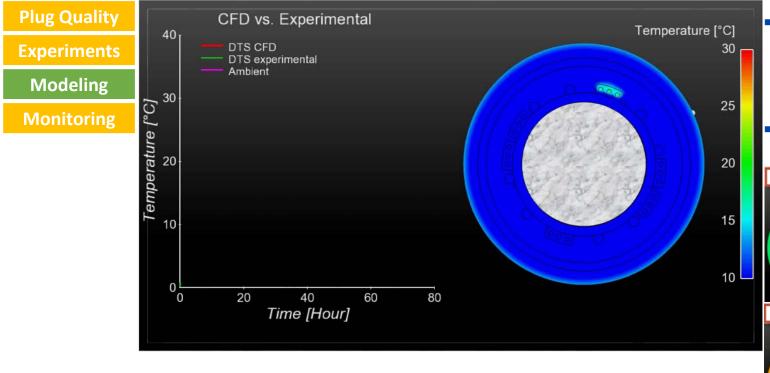
Plug Quality Experiments Modeling

Target: Form the hardest plug that corresponds to the worst subsea conditions

- Plug permeability in the range of mDa.
- 35 bar Pressure Differential across the plug
- Large conversion rate from 60% to 95%.
- 200 kg of hydrates plug formed
- 16.5 m long

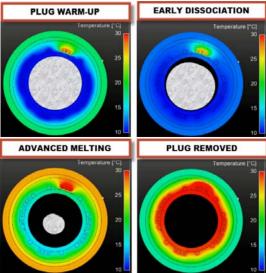
MCE Deepwater Development 2016

JIP Achievements

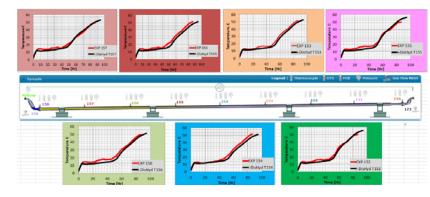

Plug Quality Experiments Modeling

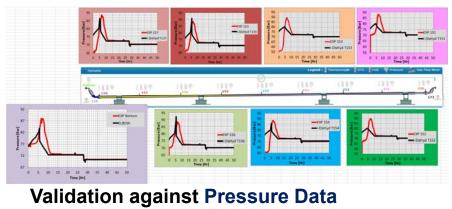
Monitoring

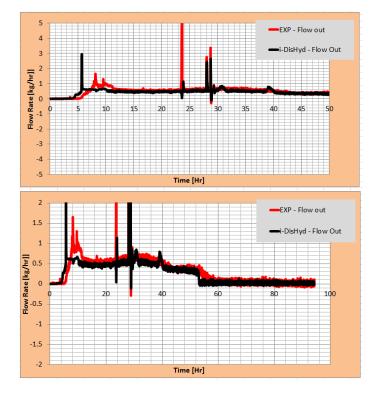
Test Number	Dissociation Scenario	Status
Phase 1 – 1	Base Case	\checkmark
Phase 1 – 2	Sensitivity on Plug Length	\checkmark
Phase 1 – 3	Sensitivity on ETH Power	\checkmark
Phase 1 – 4	Sensitivity on Number ETH Cable "In Use"	\checkmark
Phase 2 – 1	Sensitivity on High ΔP across the plug	\checkmark
Phase 2 – 2	Sensitivity on Dissociation in a Closed Volume	\checkmark
Phase 2 – 3	Sensitivity on DEH Heating Conditions	\checkmark
Phase 2 – 4	Sensitivity on Presence of Oil in Hydrate Pores	\checkmark
Phase 2 – 5	Sensitivity on Hydrate Structures	\checkmark


Extensive 3 year experimental campaign covering the most severe cases subsea for defining safe operating conditions

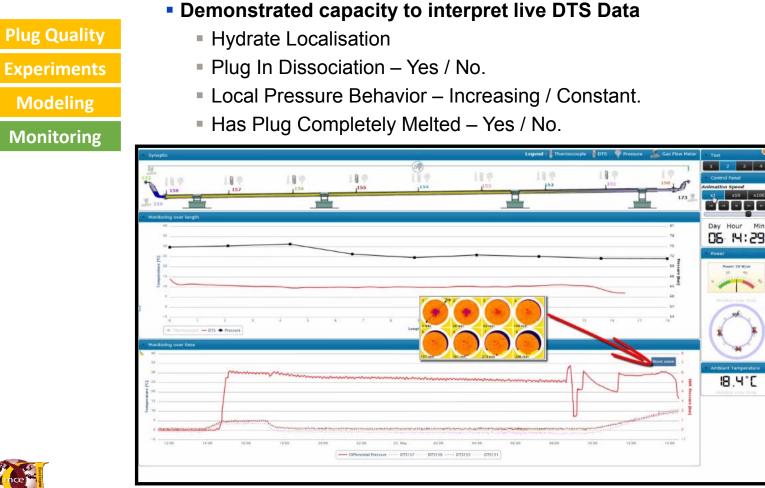
 JIP data are used for the development and the validation of 2D/3D In-House CFD Model.

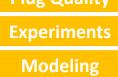

 Identification of model's limitations





 Development of i-DisHyd[™] for simulation of Subsea Operations with regard to Hydrate Plug Detection, Dissociation and Formation.




Validation against Temperature Data

Validation against Gas Flow Rate Data

Monitoring

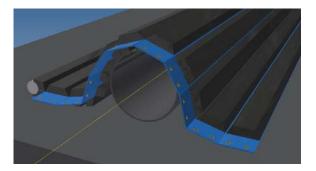
MCE Deepwater Development 2016

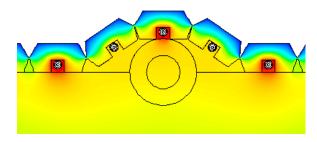
Next Steps: ETH Blanket development

Develop a heated blanket for subsea flowlines, quick and asset light flow assurance intervention.

Short-Term application:

→ Detect & remove Hydrate/Wax/Gelling accidental plugs for Brownfield


Longer-Term application:


 \rightarrow Risk Based Flow Assurance for Greenfield = CAPEX optimized design (single, wet-insulated lines) thanks to OPEX capabilities.

As an intervention kit, the ETH Blanket will allow to :

- Solve Hydrate Plugging issues in a complete, faster and cheaper manner compared to depressurization method or coiled tubing;
- Safely remediate Hydrate plugs with no risk of excessive pressure build-up or plug run-away
- Solving Wax Plugging in existing flowlines due to mis-operation or pigging;
- Decrease cold-restart pressure required to break gel plug → increase safety aspects

Combination of 2 New Technology Building Blocks to meet new field development challenges New JIP Proposal

New Active Heating Technologies for safer Hydrate Risk Management, Iower CAPEX, better Operability and Iower OPEX

- Efficient Building blocks for :
 - Greenfield : architecture simplification
 - Brownfield : long tie-backs / difficult reservoirs
- Can be efficiently combined with Subsea Processing and Topsides Optimization
- Can allow more flexible and cost effective operations including continuous integrity monitoring and new robust hydrate / wax management philosophies
- Retrofit capabilities (ETH Blanket) should assist in the development of a risk based flow assurance approach
- However, their potential benefits should be assessed at conceptual stage

Thank you for your attention!

Christina Tzotzi, Ph.D.

Study Manager – Business Integration & Planning Department christina.tzotzi@forsys-subsea.com

