"Development of the ARCA, a diverless chain connector for the high integrity of mooring lines"

Christian Bauduin - Mauro Bedini SBM offshore

PAU, FRANCE • 5-7 APRIL 2016

ARCA – Articulated Rod Connecting Arm - Definitions

Constituted of:

1.A rod

- 2. A receptacle to hold the rod's head
- 3. A cam sleeve to guide the rod through connection/disconnection
- 4. A unijoint at the rod's bottom
- 5. A lever arm to satisfy chain OPB requirements
- 6. An articulation on the install line
- 7. Load cells for mooring line load monitoring.

ARCA – Articulated Rod Connecting Arm – how it works

Why we developed it?

- Allows diverless offshore connection and disconnection.
- Allows inspection, maintenance and replacement of the articulation.
- Separates structural (I-tubes) from mechanical function (articulation).
- Can lead to room savings in turrets.
- Maintains a flush keel at yard for easy integration.
- No seafastening before hook up.
- Allows installation and replacement of a more reliable Anchor Leg Load Monitoring System.

Why full scale testing?

The performances of the cam for rotation have been extensively tested at 1/10 scale.

- However, the need for full scale testing was identified to correctly assess performances under real conditions in terms of:
 - 1. Contact pressures
 - 2. Friction coefficient
 - 3. Gaps
 - 4. Manufacturing tolerances
 - 5. Loads (pretension and winch pull)

What do we test?

1. The functionality envelope for connection/disconnection of the ARCA as a function of:

3 lines-3.7m HS

3 lines-2.5m HS

6 lines-3.7m HS

+6 lines-2.5m HS

- Line tension
- Misalignment angle
- 2. The overpull needed at winch for installation

Test bench capabilities:

- Able to simulate line inclination of 30 ° to 70 °
- Line/receptacle misalignment of +25/-19°
- OP angles simulated with cam rotation.
- Pretension simulation up to 200 tons.
- Pretension nearly constant during connection.
- Winch overpull simulation at chain table up to 200 tons
- Installation stroke over 6 meters.
- Simulated line twisting torque.

- More than 220 connection/disconnection tests have been performed on the prototype up to now.
- During a 40 year design life a maximum of one connection / disconnection every 5 years is expected for inspection.

	date	resulting receptacle inclination	resulting mooring fine inclination	τw	P	OP							
		deg	deg	deg	deg	deg							
1	1/28/2015	90	90,00	0	0.00		o						
2	1/29/2015	70	70.00	0	0.00		0						
3	1/29/2015	50	42.94	0	7,05	1	0						
4	1/29/2015	57	40.05	0	16.94		0						
5	1/29/2015	57	40.05	0	16.94		0						
6	1/29/2015	61	38.41	0	22.59		0						
7	2/4/2015	55	45.12	0	9.88		0						
8	2/4/2015	55	45.12	0	9.88		0						
9	2/4/2015	55	45.12	0	9.88		0						
10	2/4/2015	55	45.12	0	9.88		0						
11	2/5/2015	55	40.18	0	14.82		0						
12	2/5/2015	55	40.18	0	14.82		0						
13	2/5/2015	55	40.18	0	14.82		0						
14	2/5/2015	55	40.18	0	14.		roculting	roculting					
15	2/5/2015	55	35.24	0	19.	date	recentacle	mooring line	resulting	tension	тw	IP	OP
16	2/5/2015	55	35.24	0	19.	uute	inclination	inclination	misalignment	tension			01
17	2/5/2015	55	35.24	Ø	19.	24.5.4				4200		0	
18	2/5/2015	55	35.24	0	19.	24-Feb	55	55	12	1200	0.0	12	
19	2/5/2015	55	29.59	0	25.	24-Feb	55	43	12	1200	0.0	12	
20	2/5/2015	55	29.59	0	25.	24-Feb	55	40	12	1200	0.0	12	
21	2/5/2015	55	29.59	0	25.	24-Feb	55	40	15	1800	0.0	15	
22	2/5/2015	45	30.18	0	14	24-Feb	55	34	20	1200	0.0	20	0
22	2/6/2015	45	54.88	0	-9.	24-Feb	55	34	20	1800	0.0	20	0
23	2/6/2015	45	54.88	n	-9	24-Feb	55	65	-10	1200	0.0	-10	C
24	2/6/2015	45	54.88	0	-9	24-Feb	55	65	-10	1800	0.0	-10	(
	A 15 10045		54.00	-		24-Feb	55	70	-15	1200	0.0	-15	(
						24-Feb	55	70	-15	1800	0.0	-15	(
						24-Feb	55	75	-20	1200	0.0	-20	(
						24-Feb	55	75	-20	1800	0.0	-20	(

Tensions and overpull data are collected constantly over time, to identify key points during pulling.

Loads are plotted as a function of position to identify the points where friction is higher in the system.

- The typical shape of a real test data is shown below.
- Maximum winch pull is evaluated and recorded for each combination of in plane and out of plane misalignments.

Test bench – prototype operation

Status

- Performance envelope achieved at phase 4.
- Endurance of the system is proven (more than 220 connections in extreme configurations for an expected maximum of 8 connections in design life).
- Large part of testing campaign has been performed with severe rust and wear.
- Large functional gaps ensure high tolerance to wear, corrosion and marine growth.

Next steps

- Fine characterization of friction to determine winch capacity on projects.
- Test with simulated marine growth to be performed.
- Finalization of the qualification dossier with classes.

