Time-domain Nonlinear Coupled Analyses Covering Typical Mooring and Riser Configurations for FPSOs

Author: Fan Joe Zhang Presenter: Styrk Finne DNV GL - Software

PAU, FRANCE • 5-7 APRIL 2016

Contents

- Typical analysis for the design of FPSO mooring, riser and offloading system
- FPSO mooring alternatives
 - Spread mooring (MPM)
 - Turret mooring (SPM)
- Oil offloading Options
 - Tandem offloading
 - Side-by-side offloading
 - Catenary Anchor Leg Mooring (CALM) terminal
- Examples

Analysis for the design of FPSO mooring, riser and offloading system

Typical workflow

- Added Mass and Damping
- 1st and 2nd wave forces
- Wave drift damping
- Etc.

5

Mooring Types

Spread Mooring

Turret Mooring

Offloading alternatives

Tandem

Side-by-side

Mooring system

- Water depth 1,400 m
- 14 mooring lines
- Non-collinear environment

Environ	ment Condition	- West	Africa	a - 100 \	ears Ret	urn Peri	od (Re	ef. DNV-	OS-E30	1, DNV-	RP-C205)	
	Wave (Wind)			Dir	Swell			Dir	Wind	Dir	Current	Dir
	Hs (m)	Tp (s)	γ	(deg)	Hs (m)	Tp (s)	γ	(deg)	(m/s)	(deg)	(m/s)	(deg)
Cabon	2.5	8.0	2.0	180	4.0	15.2	6.0	185	21.1	210	1.36	225

MPM FPSO Mo	oring lines									
		Length	Nominal D	Drag Co	oefficients	Adde	d Mass	Mass in air	Axial Stiffness	Min Breaking Load
		(m)	(mm)	Cdy	Cdx	Cay	Cax	(kg/m)	(N)	(N)
Top Chain	R4 studless	150	119	2.4	1.15	1	0.08	281.8	1.209E+09	1.34E+07
Center wire	SPR 2 unsheathed	2000	119	1.2	0.008	1	0	56.0	5.721E+09	8.97E+06
Bottom Chain	R4 studless	150	114	2.4	1.15	1	0.08	258.6	1.110E+09	1.24E+07

Spread mooring with risers and umbilicals

14 mooring lines, 8 production risers, 4 gas injection riser,

4 water injection risers, 4 umbilicals

Results and post-processing

Results and animation

The second secon

With TLP

- 2 floaters
 - TLP and FPSO
- Positioning system
 - 14 mooring lines
 - 12 tendons
- Risers and umbilicals
 - 8 production risers for FPSO
 - 11 TTR for TLP
 - 4 gas injection riser and 4 water injection risers
 - 4 umbilicals for FPSO
 - 5 connecting umibilicals

Results

Turret mooring and riser analysis

- Mooring analysis
- Riser configurations^[4]
 - Steel Lazy Wave Riser (SLWR)
 - Tension Leg Riser (TLR)
 - Single Line Hybrid Riser (SLHR)

SLWR

- Compliant riser system
 - An alternative to SCR
- Lower stress and fatigue damage near the touch down point (TDP)
 - Maximum vertical motion at the riser hang off point is high in 100-year hurricane
- Optimized by
 - Examining riser performance in extreme sea states
 - Minimizing mount of buoyancy
- Parameters of interests
 - Max and min effective tensions
 - Max Von Mises stresses

Results

Preferable to ^[4]

- Place the "wave" as close as possible to the seabed
- Have enough buoyancy to maintain the "wave" shape up to the extreme far position

Below

Tension Leg Riser (TLR)^[5]

In the case study, 6 SCR was used, departing on each side of the buoy.

Decoupling motions of FPSO

Single Line Hybrid Riser (SLHR)^[5]

- A hybrid decoupled riser system
 - Decoupled from motions of FPSO
- SLHR composed of
 - Vertical rigid pipe
 - Stress joint and suction pile
 - Gooseneck connecting riser and flexible jumpers

moor3

Breaking line transient analysis

🔿 New 🤉 Edi	t existing B	J_dumm	-				
Line:	moor3		-				
Segment:	chain_up		-				
	First end	C Last end			<-		
Component buoy:	Component_d	lumm	-				
Cd buoy:	HD_dumm		-				
Rotation hinge:	RH_dumm		-				
	Г			1 Applu			
	L	OK	Cancel	Appry			
		OK	Cancel				
Dynamic Analy	sis Options	- Ana_100Y_I	Hurr_Lin				×
Dynamic Analy	sis Options Procedure	- Ana_100Y_I Irregular Wave	Hurr_Lin e Procedure	Nonlinear	Force Mo	del Animati	on 🔳
Dynamic Analy Nonlinear Iteration	sis Options Procedure upture/releas	- Ana_100Y_I Irregular Wave se analysis	Hurr_Lin e Procedure	Nonlinear	Force Mo	del Animati	on 🔳
Dynamic Analy Nonlinear Iteration V Perform line ru Release connecto	rsis Options Procedure upture/releas r(s):	- Ana_100Y_I Irregular Wave se analysis	Hurr_Lin Procedure	Nonlinear	Force Mo	del Animati	on 🔳
Dynamic Analy Nonlinear Iteration Perform line ru Release connecto	r(s):	- Ana_100Y_I Irregular Wave se analysis	Hurr_Lin e Procedure	Nonlinear	Force Mo	del Animati	on 🔳
Dynamic Analy Nonlinear Iteration Perform line ru Release connecto	rsis Options Procedure upture/releas rr(s):	- Ana_100Y_I Irregular Wave se analysis	Hurr_Lin e Procedure ©?	Nonlinear	Force Mo	del Animati	on 🔳
Dynamic Analy Nonlinear Iteration Perform line ru Release connecto Release connecto	rsis Options Procedure upture/releas r(s): r(s) at time:	- Ana_100Y_I Irregular Wave se analysis All BJ_dum 286 s	Hurr_Lin e Procedure or m	Nonlinear	Force Mo	del Animati	on 🔳
Dynamic Analy Nonlinear Iteration Perform line ru Release connecto Release connecto	rsis Options Procedure upture/releas r(s): r(s) at time:	- Ana_100Y_I Irregular Wave se analysis All BJ_dum 286 s	Hurr_Lin e Procedure @? m	Nonlinear	Force Mo	del Animati	on 🔳
Dynamic Analy Nonlinear Iteration Perform line ru Release connecto Release connecto	rsis Options Procedure upture/releas r(s): r(s) at time:	- Ana_100Y_I Irregular Wave se analysis All BJ_dum 286 s	Hurr_Lin e Procedure Ø?	Nonlinear	Force Mo	del Animati	on 🔳

Comparison – Intact and damaged, motions

SPM FPSO with rotatable turret model

Detachable turret (e.g. MUNIN FPSO)

Turret motions

results.tda.Dynamic.Turret.Global pos. (time domain).ZGtranslationTotalmotion (max= 4.805, min=-97.69, mean=-72.35, dev= 32.64)

10

0

-20

∃_40

-60

-80

-101.6

time [s]

-results.tda.Dynamic.Turret.Coupling system force.ZGforceVert1e (max=7.496e+08, min= 0.000, mean=4.784e+06, dev=3.866e+07)

Side-by-side offloading with SPM FPSO

Hydrodynamic coupling calculation in Wadam

More complex setting

3 bodies

20 slender structures

Decoupled motion of SPM and FTB

Dynamic loading on the flowlines reduced

Summary

- Sesam from DNV GL covers comprehensive analysis of FPSO mooring and offloading alternatives including
 - Spread mooring and turret mooring
 - Turret mooring with thrusters
 - SCR, FTB, Hybrid, etc.
- Global and local analysis easily simulated
 - Bellmouth and jumper analysis
 - Local turret analysis
- Mooring (riser) disengaged transient analysis provides more confidence
- Detachable turret analysis

References

- 1. L.T. England, A.S. Duggal, L.A. Queen, (2001) "A Comparison Between Turret and Spread Moored F(P)Sos for Deepwater Field Developments", Deep Offshore Technology 2001.
- 2. O. Ihonde, J. Mattinson, L.T. England, (2002) "FPSO mooring & offloading system alternatives for deepwater West Africa", 6th Annual Offshore West Africa Conference.
- 3. A.S. Duggal, C.O. Etheridge, J. Mattinson, (2001) "A New Deepwater Tanker Loading System for West Africa", Offshore West Africa 2001.
- 4. C.A. Zimmermann, D. Petruska, A.S. Duggal, (2002) "Effective Riser Solutions for a Deepwater FPSO", OMAE 2002.
- 5. C.A. Zimmermann, C.L. Garnero, R.C. Mark (2001) "Tension Leg Riser System An Effective solution for Deepwater Risers", OMAE 2001.

